Consider a discrete random vector, that is, a vector whose entries are discrete random variables. When one of these entries is taken in isolation, its distribution can be characterized in terms of its probability mass function. This is called marginal probability mass function, in order to distinguish it from the joint probability mass function, which is instead used to characterize the joint distribution of all the entries of the random vector considered together.
Table of contents
The following is a more formal definition.
Definition
Let
be
discrete random variables forming a
random vector. Then, for each
,
the probability mass function of the random variable
,
denoted by
,
is called marginal probability mass function.
Remember that the probability mass function
is a function
such
that
where
is the probability that
will be equal to
.
By contrast, the joint probability mass function of the vector
is a function
such
that
where
is the probability that
will be equal to
,
simultaneously for all
.
Denote by
the support of
(i.e., the set of all values it can take). The marginal probability mass
function of
is obtained from the joint probability mass function as
follows:
where
the sum is over the
set
In
other words, the marginal probability mass function of
at the point
is obtained by summing the joint probability mass function
over all the vectors that belong to the support
and are such that their
-th
component is equal to
.
Let
be a
random vector with
support
and
joint probability mass
function
The marginal probability mass function of
evaluated at the point
is
When evaluated at the point
it
is
For all the other points, it is equal to zero. Therefore, we
have
A more detailed discussion of the marginal probability mass function can be found in the lecture entitled Random vectors.
Previous entry: Marginal probability density function
Next entry: Mean
Please cite as:
Taboga, Marco (2021). "Marginal probability mass function", Lectures on probability theory and mathematical statistics. Kindle Direct Publishing. Online appendix. https://www.statlect.com/glossary/marginal-probability-mass-function.
Most of the learning materials found on this website are now available in a traditional textbook format.